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Dopamine Elevates and Lowers Astroglial
Ca21 Through Distinct Pathways

Depending on Local Synaptic Circuitry

Alistair Jennings,1 Olga Tyurikova,1,2 Lucie Bard,1 Kaiyu Zheng,1 Alexey Semyanov,2,3

Christian Henneberger,1,4,5 and Dmitri A. Rusakov1,2

Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca21 rises, the dopamine sensitivity of astroglia in
situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology,
here we monitored Ca21 in cells connected via gap junctions to astrocytes loaded whole-cell with cytosolic indicators in area
CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca21] measurements, we also employed life-time imaging of
the Ca21 indicator Oregon Green BAPTA-1. We found that dopamine triggered a dose-dependent, bidirectional Ca21

response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below-baseline decreases. The ele-
vation depended on D1/D2 receptors and engaged intracellular Ca21 storage and removal whereas the dopamine-induced
[Ca21] decrease involved D2 receptors only and was sensitive to Ca21 channel blockade. In contrast, the stratum lacunosum
moleculare astroglia generated higher-threshold dopamine-induced Ca21 responses which did not depend on dopamine
receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our
findings thus suggest that a single neurotransmitter—dopamine—could either elevate or decrease astrocyte [Ca21] depending
on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally
uncoupled from dopamine actions on local synapses. The results also indicate that [Ca21] elevations commonly detected in
astroglia can represent the variety of distinct mechanisms acting on the microscopic scale.
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Introduction

Dopamine (DA) is a neuromodulator which exerts power-

ful behavioral effects and thus has been implicated in

numerous psychiatric conditions. However, the exact mecha-

nisms by which DA acts on brain circuits remain poorly

understood, partly because of the exceedingly wide range of

its effectors (Bjorklund and Dunnett, 2007; Tritsch and Saba-

tini, 2012; Vaarmann et al., 2010). The primary signaling

targets of DA are D1- and D2-like receptors which trigger

somewhat distinct signaling pathways (reviewed in (Beaulieu

and Gainetdinov, 2011)). In brief, D1-like receptors boost

the production of cyclic adenosine monophosphate (cAMP)

and activate protein kinase A (PKA), by acting upon G

proteins Ga(s) and Ga(olf ) and thus stimulating adenylyl

cyclase (AC). D2-like receptors, in contrast, activate Ga(i) and

Ga(o) proteins thus inhibiting AC and suppressing PKA activa-

tion. Another important DA signaling channel involves Ga(i/o)

coupled receptors (of the D2-like subtype) which could act by

freeing the Gbg subunit. The latter can regulate ion channels

controlling neuronal excitability, such as the inward-rectifier

K1 channels (Beckstead et al., 2004) or N- and L-type Ca21

channels modified through activation of phospholipase C

(PLC). Among the prominent downstream actions of DA on

neurons are the altered NMDA receptor sensitivity (Snyder

et al., 1998) and induced intracellular Ca21 waves (Surmeier

et al., 1995). Intriguingly, in the hippocampus, DA has been

found to modulate memory formation (da Silva et al., 2012;

Gasbarri et al., 1996; Li et al., 2003) and to profoundly inhibit
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the perforant path input to CA1 (Otmakhova and Lisman,

2000) while also boosting long-term synaptic potentiation, with

little effect on basal transmission, at Schaffer collateral synapses

(Otmakhova and Lisman, 1996; Otmakhova and Lisman,

2000).

There has also been evidence for DA actions in cultured

astroglia. D1-type receptors have been found in cortical astro-

cytes in vitro (Requardt et al., 2012; Zanassi et al., 1999).

Their activation stimulates cAMP production and PKA acti-

vation (Zanassi et al., 1999), boosts the expression of GDNF,

NGF (Ohta et al., 2010), and FGF-2 (Li et al., 2006), and

modulates NADH and astroglial Ca21 signaling (Requardt

et al., 2012). Cultured astrocytes also express a newly

identified, PI-linked D1-like receptor associated with Ca21

mobilization (Liu et al., 2009b). Similarly, D2-type receptor

activation has been linked to increases in BDNF, GDNF and

NGF mRNA expression and protein synthesis (Ohta et al.,

2010), FGF-2 secretion (Li et al., 2006), and reduction of

S100b secretion (Nardin et al., 2011) in cultured astrocytes,

as well as suppression of ab-crystallin mediated neuroinflam-

mation in vivo (Shao et al., 2013). Also, it has long been

known that in culture D2-type receptor activation induces

Ca21 elevations in astrocytes (Khan et al., 2001; Reuss and

Unsicker, 2001), a phenomenon with multiple functional

facets (Khakh and Sofroniew, 2015; Verkhratsky, 2005). It

has recently been shown that in certain conditions such eleva-

tions could be inhibited by monoamine oxidase B inhibition,

suggesting the involvement of the ensuing DA breakdown

and free-radical generation (Vaarmann et al., 2010). Notably,

with the exception of one study (Shao et al., 2013), the DA

signaling mechanisms listed above have been investigated in

cultured or isolated cells. Given the well-documented major

differences between astroglia in culture and those in situ,

the degree of expression and the adaptive significance of

such mechanisms in organized brain tissue are yet to be

ascertained.

Astrocytes have increasingly been implicated in the modu-

lation of the synaptic efficacy and its use-dependent changes

in situ and in vivo (reviewed in (Dityatev and Rusakov, 2011;

Halassa and Haydon, 2010; Nedergaard and Verkhratsky, 2012;

Pannasch and Rouach, 2013; Perea and Araque, 2010)). In

most cases, such actions depend on astrocytic Ca21 signals,

which appear to provide an endogenous communication medi-

um for these otherwise non-excitable cells (recently reviewed in

(Rusakov, 2015; Volterra et al., 2014)). Since DA has been

reported to induce Ca21 rises and associated molecular cascades

in astroglial cultures (see above), the question arises whether

such astrocytic signals could mediate effects of DA on local

neural circuitry in organized tissue. We therefore set out first to

establish whether astrocytes in situ respond to DA with an intra-

cellular Ca21 change—and if so, by what mechanism—and sec-

ond to ascertain whether such a response could mediate

previously reported DA-induced modulation of excitatory

synaptic transmission in the hippocampus.

Materials and Methods

Hippocampal Slice Preparation
All experiments were carried out in accordance with the national

and international rules and regulations for animal experimentation

including EU Directive 2010/63/EU of 22 September 2010. Acute

hippocampal slices, 350 lm thick, were prepared from 3-4-week-old

male Sprague–Dawley rats. Animals were anaesthetized to death with

a lethal intraperitoneal injection of Sodium Pentobarbitol. The skull

was opened up and the brain excised into an ice-cold slicing solution

containing (in mM): NaCl 50, sucrose 105, KCl 2.5, MgCl2 7,

NaH2PO4 1.25, CaCl2 0.5, Ascorbic acid 1.3, Sodium Pyruvate 3,

and glucose 6 (osmolarity 304–312 mOsM), continuously bubbled

with 95% O2/5% CO2. The whole hippocampus was dissected,

placed in an agar block and transverse slices were prepared using a

Leica VT 1200S slicer. Slices were then transferred to slicing solution

kept at 348C for 15 min before being transferred to an interface or

an immersion chamber containing Ringer solution comprised of

(in mM): NaCl 119, KCl 2.5, MgSO4 1.3, NaH2PO4 1, NaHCO3

26, CaCl2 2, glucose 10 (osmolarity 298-302 mOsM). Ringer was kept

at room temperature, and continuously bubbled with 95% O2/5%

CO2. Slices were rested in Ringer for at least 45 minutes before record-

ing. All experimental protocols were carried out in full compliance with

UK guidelines on animal experimentation. For recordings, slices

were transferred to a submersion-type recording chamber and per-

fused with Ringer solution saturated with 95%O2/5%CO2. Experi-

ments were carried out at 32–338C unless specified otherwise.

AM-Ester Dye Loading
For imaging astrocytes loaded with sulforhodamine101 (SR101) and

Fluo-4-AM, slices were allowed to rest for 30 minutes in Ringer

solution, then incubated in Ringer containing 10 lM SR101 for 10

minutes at 358C. Slices were then washed three times in plain

Ringer and then incubated in Ringer containing 5lM SR101, 5lM

Fluo-4-AM and 0.04% pluronic acid for 40 minutes at 358C. Slices

were then washed three times in Ringer, rested in Ringer at room

temperature for 30 minutes and were then ready for recording.

Whole-Cell Astrocyte Patch-Clamp
Micropipettes, pulled from borosilicate, filamented glass, were used

for astrocyte whole-cell patch-clamp and pipette resistances were

3-5MX. The standard cell patch procedures in an acute slice were

Abbreviations

AC Adenylyl cyclase
cAMP Cyclic adenosine monophosphate
DA Dopamine
FLIM Fluorescence life-time imaging
GJC Gap-junction connected
KMS Potassium methyl-sulphonate
PAC Patched astrocyte cells
PKA Protein kinase A
PLC Phospholipase C
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followed as described (Zheng et al., 2015). Intracellular solution was

potassium methyl-sulphonate (KMS) based solution containing (in

mM): KCH3O3S 135, HEPES 10, disodium phosphocreatine 10,

MgCl2 4, Na2ATP 4, NaGTP 0.4 (pH adjusted to 7.2 with KOH,

osmolarity 290–295 mOsM). For cell imaging and [Ca21] monitor-

ing, two fluorescent dyes were added to the intracellular solution,

Alexa Fluor 594 (50 lM) as a morphological marker and Fluo-4

(200 lM) as a Ca21 indicator. For every patched astrocyte, the

membrane current-voltage (I-V) relationship was plotted by stepped

injection of current through the patch pipette, at 200 pA steps. Posi-

tive electrophysiological identification of a passive protoplasmic

astrocyte required a linear I-V relationship and a low input resistance

(<10 MX) as well as a resting membrane potential lower than

280 mV (Henneberger and Rusakov, 2012).

Extracellular Field Recordings
Electrical signals were acquired through an Axon instruments CV-7B

headstage, connected to the pipette solution by a chlorided silver

wire, and a Multiclamp 700B amplifier. Each primary output was

connected to a Humbug to reduce 50Hz background noise. Signals

were filtered at 3–6 kHz, digitized and sampled through an

analogue-to-digital converter, either an Axon CNS 1440A, or

National Instruments BNC 2090, at 10 KHz. Software used for

acquisition was either WinCP 4.2.1 or Clampex 10.2. Excitatory

post-synaptic field potentials (fEPSPs) were recorded through glass

micropipettes of 1-2 MX resistance. For Schaffer collateral stimula-

tion, axonal fibers were stimulated with a bipolar electrode from a

Digitimer DS3 constant current stimulator box. The stimulating

electrode was placed in stratum radiatum, 100-200 lm closer to

CA3 then the recording electrode. The configuration was allowed to

settle for up to 10 minutes and then the stimulus intensity was grad-

ually increased until no further increase in the fEPSP slope was seen.

The stimulus power was then adjusted to give 50-60% of the maxi-

mal fEPSP slope – stimulus power did not exceed 70 lA and lasted

100 ls. Paired-pulse stimuli were given with an inter-stimulus inter-

val of 50 ms and repeated every 15 s.

Two-Photon Excitation Imaging
Two setups were used to record fluorescent intensity images; either a

modified Bio-Rad Radiance 2000 on an Olympus BW50 microscope

with a 40x objective, or a Fluoview FV1000 MPE microscope with

a 25x objective. Both were optically linked to a separate femtosecond

pulse TiSapphire MaiTai laser (SpectraPhysics) set to emit at

800 nm. Laser power was kept between 5 and 8 mW for bulk-

loaded Fluo-4-AM imaging, 2–5 mW for patch-pipette-loaded Fluo-

4 fluorescence imaging (as measured under the objective at

800 nM). Alexa Fluor 594 normally equilibrated across the astrocyte

tree within 10–15 min (Zheng et al., 2015). During recordings,

images were acquired simultaneously as frame scans in the Alexa

emission channel (red) (540LP/700SP filter) and the Fluo-4 emis-

sion channel (green) (515LP/530SP filter). When recording from

bulk-loaded astrocytes unreliable dye loading of processes, and rela-

tively poor signal to noise ratio (in comparison to whole-cell patch-

clamp loaded astrocytes), necessitated data acquisition from somata

alone. Image zoom was adjusted to best capture the salient features

of the imaged cells—somata of GJCs and visible (within resolution)

patched astrocyte processes. Gain for both channels was kept the

same and constant within a particular 2-P setup. Pixel dwell time

was kept constant (4 ls). Images were acquired at 1Hz. If cells failed

to show protoplasmic astrocytic morphology after 10–15 minutes

dye equilibration and GJCs they were discarded. If cells showed

abnormally high resting Fluo-4 fluorescence signal compared to the

morphological marker, they were likewise discarded.

Recording From Gap-Junction Coupled Astrocytes
This entails whole-cell patch-clamp of an astrocyte and the subse-

quent imaging of nearby gap-junction connected (GJC) astrocytes.

The procedure usually required low input resistance and �30 min

for dye diffusion through the syncytium, the procedures similar to

standard one-cell patch-clamp experiments. For these recordings a

recording configuration was chosen to allow simultaneous recording

from both the patched cell processes and the GJC somata. In a sub-

set of experiments, only GJC somata could be recorded from.

Recordings were only made when the diffusion of the dye from the

pipette into the syncytium had equilibrated, as measured by the

intensity of the reference dye, Alexa Fluor 594. If significant

(>10%) fluctuations in Alexa fluorescence intensity in GJCs were

witnessed, the recording was discarded.

Image Analysis
Regions of interest (ROIs) were divided into four categories based

on the morphology in the Alexa 594 channel: Patched astrocyte

(PAC) soma; PAC process; and GJC soma. Only visible structures

with clear astrocyte morphology were chosen as ROIs. An area of

each image showing no fluorescence from the morphological marker

was chosen to give a measure of average background fluorescence.

For each ROI the average pixel fluorescence was taken for each

frame and the average background fluorescence for that frame was

subtracted (to correct for instrumental noise). In control trials and

where indicated, Fluo-4 signal (green, G) was normalized to the

morphological marker signal (red, R) to correct for fluorescence

changes due to tissue movement (giving G/R) and laser power fluc-

tuation. Fluo-4 signals presented here have been normalized to the

average fluorescence from each ROI in the baseline phase of each

recording, to give DF/F0.

Monitoring Intracellular Ca21 Concentration With
Fluorescence Life-Time Imaging (FLIM) of OGB-1
These measurements were based on the well-established OGB-1

life-time sensitivity to nanomolar concentrations of free Ca21

(Wilms et al., 2006) and carried out using a two-photon excitation

Femto2D microscope equipped with FLIM detectors (Femtonics,

Budapest) using optimised and calibrated readings of OGB-1 life-

time sensitivity to [Ca21], as detailed earlier (Zheng et al., 2015).

Cell-impermeable OGB-1 was added to the astrocyte patch pipette

solution at 200 mM. Other protocols pertinent to patch-clamp and

imaging were similar to those used in intensity measurements of

Fluo-4 fluorescence in GJC astroglia (above).
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Sampling and Statistics
Throughout our testing we normally used one slice per animal, and

recorded 1–3 cells per slice. Because in such experiments the greatest

source of variance are individual cells and because the effects in

questions are documented as a real-time change in individual cells

(i.e., no inter-cell or inter-slice comparisons), individual cells are

referred to as a statistical unit, to follow the practice of real-time sin-

gle-cell physiology studies.

Physiological viability of imaged astrocytes was routinely

checked by observing their spontaneous Ca21 fluctuations. All

recorded cells were routinely added to the statistical sample: the a pri-

ori rejection criterion was the baseline fluorescence approaching the

microscope detection threshold (thus affecting DF/F measures) or

being too weak for FLIM acquisition. Astrocytes showing any signifi-

cant (>20%) experiment-wise trend in baseline fluorescence were also

discarded. Samples were tested with the Shapiro-Wilks test for nor-

mality; for comparing populations with a normal distribution, the

Student’s t-test was used, otherwise, the Mann-Whitney test was used.

Results

Dopamine Induces Prominent Ca21 Responses
In the stratum radiatum of the hippocampal CA1 region, we

held astrocytes in whole-cell mode loading them with the

morphological tracer Alexa 594 and Ca21 indicator Fluo-4,

as detailed previously (Henneberger et al., 2010). Within 10-

15 minutes we were able to visualize the local astrocyte syncy-

tium (Fig. 1A) including the patched astrocyte (PAC) and

cells connected to the PAC via gap junctions (GJC cells),

consistent with earlier reports (Giaume et al., 2010; Zheng

et al., 2015). Bath-applied DA (100 lM for 10 min, see con-

trols for neuronal involvement below) had no detectable effect

on Ca21 in the PAC somata, possibly because of the proximi-

ty of the dialyzing pipette. However, it triggered robust

[Ca21] elevations in GJC somata (Fig. 1B).

To confirm this basic observation with an alternative

imaging method, we labeled astroglia in bulk by slice incuba-

tion with cell-permeable Fluo-4 AM (Fig. 1C; astrocytes were

identified in a ’red’ emission channel using sulforhodamine

101, SR101). These bulk-loaded cells displayed Ca21

responses to DA which were qualitatively similar to those in

GJC cells (Fig. 1D) although approximately half the size on

average (Fig. 1E). To control for signal rundown and to mini-

mize false-negatives in pharmacological dissection trials, DA

was applied twice in some of these experiments (Fig. 1D, see

below). Dose-response tests indicated that bulk-loaded astro-

glia was substantially less sensitive than GJC cells to DA

application (Fig. 1F). Overall, the Ca21 responsiveness of

astroglia to DA in acute brain slices was qualitatively consis-

tent with that reported previously in cultured astroglia (Khan

et al., 2001; Parpura and Haydon, 2000; Reuss and Unsicker,

2001; Vaarmann et al., 2010). Thus, we confirmed that Ca21

responses documented here were most prominent in GJC

cells which underwent minimal perturbation due to the

pipette dialysis, and therefore were likely to preserve the

endogenous mechanisms of Ca21 homeostasis, as reported

recently (Zheng et al., 2015). Intriguingly, in recordings from

individual GJC astroglia we could clearly detect reductions in

basal Ca21 signal, upon and after DA application (Fig. 1B,

blue arrows). These, however, were masked by the more

prominent Ca21 signal elevations when averaged across cells

(Fig. 1E). In our subsequent experiments we therefore

attempted (a) to dissect the basic molecular machineries

responsible for [Ca21] elevations and decreases, and (b) to

validate these observations using the imaging method which

is highly sensitive to nanomolar [Ca21] but not to the

possible concomitants of fluorescence intensity readout (such

as cell volume changes or focus drift).

DA-Induced Ca21 Elevations Rely on DA Receptors
But Do Not Depend on Neuronal Spiking,
Metabotropic Glutamate or GABA Receptors
Application of DA could potentially prompt changes in local

neuronal activity, including previously documented changes

in excitatory transmission (Otmakhova and Lisman, 2000).

Nerve cell activity could in turn evoke astroglial Ca21 transi-

ents, notably through metabotropic glutamate receptors or

GABAB receptors expressed in hippocampal astrocytes (Ham-

ilton and Attwell, 2010). To dissect neuronal influences, we

repeated our experiments in the presence of Na1-channel

blocker TTX (1 lM), mGluR5 blocker MPEP (1 lM),

mGluR5 blocker LY367385 (100 lM), mGluR2/3 blocker

LY341495 (500 nM) and GABAB receptor blocker CGP (1

lM), separately or in a cocktail. This receptor blockade did

not appear to affect DA-induced Ca21 elevations in either

bulk-loaded or GJC astroglia whereas such elevations

were completely blocked by the mixture of the D1/5 receptor

blocker SCH23390 (20 lM) and D2/3 receptor blocker

sulpiride (50 lM), or alternatively by sulpiride alone (20 lM)

(Fig. 1G-I). The latter result has suggested that activation of

D1/5 receptor on its own (or receptors beyond D1/5 and D2/

3 types) is unable to induce detectable Ca21 signals in the

astroglia under study. In addition, a selective purinergic P2X

antagonist PPADS (100 mM) appeared to halve the

DA-induced Ca21 rise (Fig. 1I, difference 1.16 at P 5 0.026

compared to control in Fig. 1E-F) suggesting a role for ATP in

boosting astroglial Ca21 rises (Pascual et al., 2005).

Inhibition of monoamine oxidase B (MAOb) with selegi-

line (20 lM) has been reported to inhibit DA-induced Ca21 sig-

naling in astrocytes through reactive oxygen species production

(ROS) leading to lipid peroxidation and downstream PLC-

mediated activation of the IP3 pathway (Vaarmann et al., 2010).

We found that the DA stimulus still produced a detectable Ca21

response in the presence of selegiline although this response
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FIGURE 1: Dopamine-triggered Ca21 responses in CA1 stratum radiatum astroglia. A: Example of a patched (PAC) and GJC astroglia (Alexa
594, kx

2P 5 800 nm). B: Traces, characteristic Ca21-dependent fluorescence (Fluo-4 channel) monitored in GJC astroglia (soma) during applica-
tion of dopamine (100 mM, orange bar); blue arrows, clear negative defections of Ca21 signal indicating decreases in [Ca21]. C: Example of
astroglia bulk-labeled with sulforhodamine 101 (SR101) and Fluo-4 AM (SR101 channel, kx

2P 5 800 nm). D: Traces, characteristic Ca21-depen-
dent fluorescence (Fluo-4 channel) monitored in bulk-labeled astroglia (soma) during paired bath application of dopamine (100 mM, grey bars);
image panels, illustration of Fluo-4 channel recording of individual astroglia corresponding to experimental epochs 1-5, as in the traces. E:
Average time course (mean 6 SEM) of Ca21-dependent fluorescence (Fluo-4 channel) in GJC (open circles, n 5 16) and Fluo-4 AM bulk-labeled
astroglia (grey circles, n 5 14), as indicated, in response to application of dopamine (100 mM, orange bar; single-stimulus DA responses only). F:
Dose dependence of dopamine-induced astroglial Ca21 response (DF/F, mean 6 SEM amplitude) in bulk labeled and GJC astroglia, as indicat-
ed; digits inside columns, sample size; **P < 0.01, ***P < 0.005. G: Average amplitude (DF/F, mean 6 SEM) of Ca21 response to dopamine (appli-
cation as in B) in bulk-loaded astroglia in the presence of TTX (1 lM; responses to drug application alone, before DA application are shown in
grey here), non-specific mGluR blocker MCPG (200 mM), D1/5 receptor blocker SCH23390 (20 lM) and D2/3 receptor blocker sulpiride (50 lM)
(SCH1Sulp), and monoamine oxidase B (MAOb) inhibitor selegiline (20 lM, Sg), as indicated; digits inside columns, sample size. *P < 0.05. H:
Average amplitude (DF/F, mean 6 SEM) of Ca21 response in Fluo-4 AM bulk-loaded astroglia to paired-application of dopamine (as in D), with
the drug applied before the second stimulus: control, selegiline (20 lM), and IP3 receptor blocker 2-APB (100 mM); digits inside columns, sam-
ple size; **P < 0.01, ***P < 0.005. I: Average amplitude (DF/F, mean 6 SEM) of Ca21 response in GJC astroglia to dopamine (100 mM, as in A-B),
in the presence of a drug cocktail containing TTX (1 lM), mGluR5 blocker MPEP (1 lM), mGluR5 blocker LY367385 (100 lM), mGluR2/3 blocker
LY341495 (500 nM) and GABAB receptor blocker CGP (1 lM); a selective purinergic P2X antagonist PPADS (100 mM), D1/5 receptor blocker
SCH23390 (20 lM) and D2/3 receptor blocker sulpiride (50 lM) (SCH1Sulp), sulpiride only (50 mM), and SCH23390 only (10 mM); *P < 0.05;
**P < 0.01 (note two-scale ordinate). [Color figure can be viewed at wileyonlinelibrary.com]
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tended to be smaller than the one without selegiline (Fig.

1G,H). Thus, in CA1 astroglia in situ the MAOb cascade

appears to play a less critical role in mediating the DA action if

compared to that in cultured astrocytes (Vaarmann et al.,

2010).

Intriguingly, Ca21 imaging in GJC cells detected that

the D1/5 receptor blockade with SCH23390, while abolish-

ing DA-induced [Ca21] elevations, unmasked DA-induced

[Ca21] decreases in these cells (Fig. 1I). As mentioned above,

such decreases were apparent in individual cell recordings,

during and after the DA stimulus (Fig. 1B, blue arrows).

Because this uncommon observation relied on the fluores-

cence intensity measures and thus could be influenced, for

instance, by small volume changes in recorded cells, we

explored it further, as explained in the sections below. First,

however, we sought to identify cellular mechanisms mediating

the prominent Ca21 elevations documented in the experi-

ments above.

DA-Induced Ca21 Increases Depend on Ca21

Storage and Removal Mechanisms
It has long been known that IP3 receptor-driven internal Ca21

stores are a major source of activity-induced intracellular Ca21

elevation in astroglia (Fiacco et al., 2009; Volterra et al., 2014).

First, we found that application of the IP3 receptor blocker

2-APB (100 lM) completely abolished the DA-evoked Ca21

response in experiments with paired application of DA (to mini-

mize false negatives; Fig. 1H). To explore the pathway of intracel-

lular Ca21 homeostasis further, we tested the effect of the Ca21

pump inhibitor CPA (30 mM). Applied in bath, CPA induced a

prominent Ca21 elevation (consistent with the suppression of

intracellular Ca21 removal), which occluded any effects of DA

applied subsequently (Fig. 2A). We next modified our test and

applied a Ca21 store inhibitor thapsigargin (5 mM) immediately

after the first DA stimulus, to test whether the thapsigargin-

induced depletion and subsequent blockade of Ca21 stores, as

documented earlier in neuronal axons (Scott and Rusakov,

FIGURE 2: Dopamine-induced astroglial Ca21 elevations depend on intracellular Ca21 storage and removal but not on IP3 diffusion buff-
ering. A: Average time course (mean 6 SEM, n 5 9) of Ca21 -dependent fluorescence (DF/F, Fluo-4) in GJC astroglia during the applica-
tion of cyclopiazonic acid (CPA) (30 mM) and, subsequently, DA (100 mM), as indicated. B: Average time course (mean 6 SEM, n 5 3) of
Ca21 -dependent fluorescence (DF/F, Fluo-4) in bulk-loaded astroglia during the application of DA (100 mM, 5 min), then thapsigargin
(Th, 5 mM), and another DA application, as indicated. C: Characteristic Ca21 responses (Fluo4 fluorescence) to DA application (100 lM,
grey bar) in bulk-loaded hippocampal astrocytes from wild-type mice (WT, top) and IP3-sponge mice (bottom). D: Average time course
(mean 6 SEM) of DF/F Ca21 responses to DA (as in C) from wild-type mice (hollow circles, n 5 18) and IP3-sponge mice (grey circles,
n 5 16). [Color figure can be viewed at wileyonlinelibrary.com]
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2006), would affect responses to a second DA stimulus. We

found that thapsigargin maintained, but did not increase, the

Ca21 elevation produced by first DA stimulus while occluding any

Ca21 responses to the second DA stimulus (Fig. 2B). These results

suggest therefore that intracellular mechanisms of Ca21 storage

(possibly IP3 receptor-dependent) and removal play a major role in

generating DA-induced Ca21 elevations in our experiments.

Finally, to find out whether such Ca21 elevations depend

on diffusion of the IP3 receptor ligand IP3 across the cell vol-

ume (as opposed to a highly localized IP3 action), we used a

genetic animal model that produced an IP3 ’sponge’ protein

complex targeted to astroglia. This IP3 ‘sponge’ exhibits 1000-

fold greater affinity to IP3 than the native IP3(1) receptor

(Uchiyama et al., 2002). It was shown previously that in the

IP3-sponge animals astrocytic Ca21 waves evoked by the classi-

cal mGluR-IP3 cascade were significantly attenuated, thus

implicating intracellular IP3 diffusion as an important contrib-

utor to the wave generation or propagation (Tanaka et al.,

2013). In contrast, in our experiments DA-induced Ca21 sig-

nals in the IP3-sponge animals were indistinguishable from

those in the wild type (Fig. 2C,D). These data suggest that,

unlike mGluR agonists, DA engages IP3 receptors on a small

scale, possibly within a nanodomain: at this scale, the effect of

sponge-like IP3 buffer is likely to be minimal, akin to what has

long been demonstrated in studies of intracellular Ca21 diffu-

sion and buffering (Eggermann et al., 2012).

DA Elevates and Lowers Astroglial Ca21

Engaging Distinct DA Receptor Mechanisms
The Fluo-4 fluorescence intensity measurements suggested that

DA could induce both elevations and (subsequent) decreases in

astroglial [Ca21], in a DA receptor-dependent manner (Fig.

1I). To validate and explore this further, we monitored internal

[Ca21] using a direct concentration readout based on the fluo-

rescence life-time imaging (FLIM) of OGB-1, which is highly

sensitive to free nanomolar Ca21 but not to the dye concentra-

tion, photobleaching, or light scattering and absorption in tis-

sue (Zheng et al., 2015). The OGB-1 FLIM measure could

clearly detect a DA-induced elevation followed by a decrease in

[Ca21] (Fig. 3A,B). A powerful cocktail of ionotropic and

metabotropic receptor-channel blockers applied to eliminate

network influences left this [Ca21] elevation largely unaffected

(Fig. 3C). Intriguingly, the FLIM approach could also detect a

relatively small [Ca21] decrease upon the cocktail application

alone (Fig. 3C), consistent with some contribution of neuronal

activity to basal astroglial [Ca21] (Di Castro et al., 2011; Pan-

atier et al., 2011).

In line with the Fluo-4 fluorescence intensity data

(Fig. 1I), these experiments also showed that DA application

under the blockade of D1/5 receptor with SCH23390 lowered

basal [Ca21] (Fig. 3D; FLIM also detected a slight [Ca21]

decrease upon SCH23390 application alone). It was earlier

suggested that D2/3 receptor activation can reduce Ca21

mobilization through modulation of L-type VGCCs in rat

nucleus accumbens neurons of the rat (Perez et al., 2011);

the involvement of voltage-gated Ca21 channels would also

seem consistent with the occlusion of DA-induced [Ca21]

decreases through the suppression of network influences on

astroglia (Fig. 3C). Intriguingly, we found that an L-type

Ca21 channel blocker nifedipine did reduce basal [Ca21],

which occluded any subsequent DA-induced [Ca21]

decreases while leaving [Ca21] elevations qualitatively

intact, but only in the processes of the patched cell (Fig.

3E). The somata of GJC astroglia remained non-responsive to

nifedipine (Fig. 3E; fluorescence signal in the processes was too

weak for reliable assessment), thus suggesting the cell-

compartment specific sensitivity to Ca21 channel blockade.

DA Induces High-Threshold Ca21-Elevations in
Perforant Path Astroglia While Independently
Inhibiting Local Synapses
To understand the physiological implications of prominent

DA-induced Ca21 signals in astroglia we asked if such signal-

ing could play a role in regulation of local synaptic transmis-

sion. It was previously shown that in hippocampal area CA1

DA application inhibits excitatory synaptic transmission, in

particular at perforant path-CA1 synapses in stratum lacunosum

moleculare (SLM, at concentrations of 20 mM and higher)

(Otmakhova and Lisman, 1999). We therefore asked whether

this phenomenon could be explained, at least partly, by the

DA-induced Ca21-dependent activity of local astroglia. To

restrict our experimental manipulations to the SLM region of

CA1 pyramidal cell apical dendrites, we applied DA through a

patch pipette located in the vicinity of the patched SLM astro-

cyte (Fig. 4A). First, however, we found that bath application

of 20 mM DA, while inducing a clear [Ca21] increase in GJC

astroglia in the stratum radiatum (Fig. 1F), had no effect on

[Ca21] in SLM astroglia (Fig. 4A). Only when DA concentra-

tion was increased to 200 mM in the application pipette (Fig.

4A), its application (in paired-stimulus tests, to minimize run-

down and false-negatives) induced a clear [Ca21] rise (Fig. 4C;

note the control for mechanical effects of puffing).

In full accord with the previously published observations,

in these tests DA application also inhibited local a-fEPSPs

recorded through the astrocyte patch pipette: this method

enabled us to deal with synapses adjacent to the patched astro-

cyte, or within the tissue domain occupied by the patched astro-

cyte (Henneberger and Rusakov, 2012). Strikingly, blocking DA

receptors before the second DA stimulus completely abolished

synaptic inhibition, which was consistent with the previous work

(Otmakhova and Lisman, 1999), while—surprisingly—leaving

astroglial [Ca21] elevations intact (Fig. 4D).
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To further test whether astrocyte Ca21 activity is

involved in DA-induce synaptic inhibition in this circuitry,

we held a local astrocyte first in cell-attached mode, then in

whole-cell loading it with a Ca21 clamping solution (to suppress

internal Ca21 signaling (Henneberger et al., 2010)) while record-

ing perforant path stimulation-induced local fEPSPs, before and

FIGURE 3: Dopamine evokes a bi-phasic, bi-directional Ca21 response in CA1 astroglia. A: An example showing the monitoring of basal
[Ca21] in CA1 GJC astroglia (dotted circle) with two-photon excitation FLIM of OGB-1 (as in (Zheng et al., 2015)) loaded through the
patched cell (centre); internal [Ca21] levels are colour-coded, as indicated; averaging window is 2 min. B: Plot, average time course of
intracellular [Ca21] (mean 6 SEM, n 5 8) during application of DA (100 mM, orange bar), as indicated; bar graph, statistical summary
(mean 6 SEM over the experimental epochs); *P < 0.05, significance level relative to baseline (dashed line). C: Plot, average time course
of intracellular [Ca21] (mean 6 SEM, n 5 17) during the application of a receptor blocker cocktail (in mM: 1 MPEP, 50 PTX, 1 TTX, 1
CGP52432, 50 A-AP5, 25 DNQX, 100 LY367385, 0.5 LY341495) followed by DA application (100 mM, orange bar), as indicated; bar
graph, statistical summary (mean 6 SEM over the experimental epochs); *P < 0.05, **P < 0.01, ***P < 0.005, significance level relative to
baseline [Ca21] (dashed line). D: Plot, average time course of intracellular [Ca21] (mean 6 SEM, n 5 11) during the application of the D1/5
receptor blocker SCH23390 (20 lM) followed by DA application (100 mM, orange bar), as indicated; bar graph, statistical summary; nota-
tion as in B. E: Plot, average time course of Ca21-dependent fluorescence (DF/F of Fluo-4; mean 6 SEM, n 5 5) in GJC astroglia (hollow
circles) and in peripheral processes of PAC (PAC-p, filled circles) during the application of the L-type Ca21 channel blocker nifedipine (20
lM) followed by DA application (100 mM, orange bar), as indicated; bar graph, statistical summary (DF/F mean 6 SEM over the experi-
mental epochs); PAC-p data are marked by light grey borders; other notations as in B–D.
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FIGURE 4: Putative roles of astrocytes in hippocampal circuit dopamine signalling. A: Experimental arrangement in s. lacunose molecu-
lare (SLM), showing recording whole-cell pipette (Fluo-4), dopamine pressure application pipette (DA puff), and stimulating electrode
(stim) shown; patched astroglia and GJCs stained via gap-junction escape of Fluo-4 can be seen. B: Distinct dopamine (DA) sensitivity of
astroglia in s. radiatum (SR) and SLM: Time-course (mean 6 SEM) of Ca21 response to the bath application of 20 lM DA in SR (hollow)
and SLM (filled) GJCs, n 5 12 and n 5 10, respectively; difference is at least at P < 0.05 (unpaired t-test) over the 15-20 min window. C:
Open circles, time course (mean 6 SEM) of Ca21 -dependent (Fluo-4) fluorescence of GJCs in SLM during two brief (3 min) local DA puffs
(200 mM in the puff pipette, as in A), as shown (n 5 10); grey filled circles, control experiments with no DA in the puff pipette (n 5 7);
magenta, time course of a-fEPSPs recorded from the patched astroglia (n 5 3) indicating reversible dopaminergic inhibition of perforant
path—CA1 synapses, reported earlier. D: Experiments as in C but with DA receptor blockers 5 mM SCH23390 and 20 mM Sulpiride
applied after the first stimulus (red) abolishing synaptic inhibition (bottom, n 5 3) but not astroglial Ca21 responses (top, n 5 6); notations
as in C. E: Dopaminergic inhibition of perforant path fEPSPs or a-fEPSPs persists after astrocytic Ca21 clamp. Open circles, time course
(mean 6 SEM) of normalized fEPSP slope for cell-attached (i), whole-cell equilibrating (ii) and whole-cell recording (iii) followed by bath
application of DA (black bar) (n 5 4); magenta, a-fEPSPs recorded form the patched cell in Ca-clamp conditions (n 5 4); grey filled circles,
control fEPSPs, with no Ca-clamp (n 5 6); traces, examples of fEPSPs of varied amplitudes recorded in one experiment. [Color figure can
be viewed at wileyonlinelibrary.com]
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during DA application. Monitoring synaptic activity, either with

a local extracellular electrode near the patched astrocyte or, again,

directly through the astrocyte pipette (Henneberger and Rusakov,

2012), showed no effect of Ca21 clamp on DA-induced synaptic

inhibition (Fig. 4E). Thus, Ca21 signals in SLM astroglia do not

appear causally related to the DA-induced inhibition of local

perforant path-CA1 pyramidal cell synapses.

Discussion

Here we report that DA can trigger increases and decreases in

intracellular astrocytic calcium concentration in acute brain

slices. Astrocytes in situ are inter-connected by gap junctions

(Giaume and Theis, 2010), which are permeable to the fluo-

rescence indicators we used (Fluo-4, Alexa 594, OGB-1). The

diffusion of these dyes into neighboring astroglia allowed us

to image Ca21 signals in the GJC cells unperturbed by

patch-pipette dialysis (Zheng et al., 2015). As expected, the

patched cell soma showed little Ca21 sensitivity: it is a rela-

tively small cell compartment (8–10 lM diameter) which will

dialyze rapidly with the pipette solution, probably washing

out small endogenous signaling molecules that could be vital

for DA-induced effects.

We found large DA-induced increases in astrocytic

[Ca21], which were consistent with the previous findings in

cultured astroglia (Parpura and Haydon, 2000; Requardt

et al., 2012). Our tests showed that in stratum radiatum astro-

glia these increases were suppressed by the IP3 receptor block-

er 2-APB and occluded by Ca21 released from internal stores

or as a result of Ca21 pump blockade. This is in line with

the reported observations in culture suggesting that both

D1-type and D2-type receptors trigger release of IP3 (Hasbi

et al., 2009; Hernandez-Lopez et al., 2000). In astrocytes,

both the D1-type receptor-mediated activation of the PLC/

IP3 pathway reported earlier (Liu et al., 2009c) and the direct

effect of NADH increase on IP3 receptors, also mediated by

D1 receptors (Requardt et al., 2012), could be responsible for

this IP3-dependent calcium increase. Intriguingly, DA-

induced Ca21 elevations were not affected by intracellular IP3

buffering in the IP3-sponge animals even though in these ani-

mals the classical mGluR-induced Ca21 waves had been

found partially inhibited in CA1 astroglia (Tanaka et al.,

2013). This observation suggests little role of IP3 diffusion

over any appreciable distances in the phenomenon pointing

instead to a nanodomain-type interaction between IP3 and its

receptor.

The ability of DA to decrease astrocytic Ca21 was a novel

and unexpected finding. In astrocytes in situ, previous evidence

associated inducible Ca21-decreases with TRPA1 channel-

dependent regulation of basal [Ca21] which was decreased by a

specific blockade of these channels (Shigetomi et al., 2013).

Interestingly, in peripheral neurons, apomorphine—a non-

selective dopamine receptor agonist with a slight preference

toward D2-type receptor activation—triggered concentration-

dependent activation (low concentrations) or inhibition (higher

concentrations) of the TRPA1 channel (Schulze et al., 2013)

(although see (Aman et al., 2007)). This novel site of potential

dopamine action could be another explanation for the Ca21-

decrease reported here. We also found that the blockade of D2/

3 receptor, or both D1 and D2-type receptors, inhibits DA-

induced Ca21 response in either direction whereas blocking

D1/5 receptor alone diminishes [Ca21] increases (consistent

with previous studies (Liu et al., 2009a; Requardt et al., 2012))

while leaving Ca21 decreases unaffected. This suggests that

Ca21 increases are under the prevalent control of both D1 and

D2-type receptors (Hasbi et al., 2010; Hasbi et al., 2011),

whereas Ca21 decreases are only controlled by D2/3 receptors.

As for the D2/3 receptor-mediated Ca21 decrease, there

is evidence for this function of D2-type receptors in the liter-

ature: apomorphine (see above) can decrease Ca21 in chro-

maffin cells through PLC inhibition (a recognized

downstream signaling molecule of D2/3Rs) and Ca21 entry

into the cell (Sontag et al., 1990). Interestingly, in nerve cells

of nucleus accumbens, D2/3 receptor activation has been

shown to decrease calcium mobilization through modulation

of L-type VGCCs in rat (Perez et al., 2011), and in rodent

prefrontal cortical neurons D4 receptors decrease NMDAR

mediated Ca21 currents (Wang et al., 2003). Thus, some

studies suggest that D2/3R-mediated decreases in intracellular

Ca21 could involve inhibition of Ca21 channel activity. Cor-

respondingly, astroglial Ca21 concentration tends to decrease

when extracellular Ca21 is depleted (Verkhratsky and Parpura,

2014). As astrocytes are known to express functional VGCCs

(Barres et al., 1989; Burgos et al., 2007; D’Ascenzo et al.,

2004; Padmashri and Sikdar, 2007), these channels could

therefore underlie the mechanism of DA-induced Ca21

decreases. Indeed, in our experiments an L-type Ca21 channel

blocker nifedipine occluded such decreases—albeit in astro-

cyte processes only. Whilst this suggests a role for the

network-activity dependent Ca21 channel entry in maintain-

ing astroglial [Ca21], the relationship between somatic and

peripheral mechanisms of Ca21 control requires further stud-

ies. Interestingly, the level of oxidative stress in cultured neu-

rons has been found to control the effect of dopamine on

calcium levels, with higher oxidative stress (such as may be

found in the presence of high concentrations of dopamine,

see (Vaarmann et al., 2010)) triggering D2/3R-dependent

inhibition of local VGCC opening (Steullet et al., 2008),

although this has also been reported to trigger TRP channel

opening (Kim and Hwang, 2013).

Unlike the prominent Ca21 rises recorded from astro-

cytes in stratum radiatum in response to a 20 mM DA appli-

cation, SLM astrocytes showed Ca21 increases only when a
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200 lM DA stimulus was applied. At these relatively high

concentrations, some of the DA applied in SLM could

have triggered Ca21 responses in the more sensitive stratum

radiatum astrocytes nearby. Nonetheless, Ca21 responses of

SLM astroglia were DA receptor independent and therefore

could not have resulted from Ca21 signal propagating from

stratum radiatum astrocytes in which [Ca21] elevations were

DA receptor dependent. This observation indicates a clear dif-

ference in sensitivity to DA between astrocytes from different

hippocampal strata. Some morphological differences between

stratum radiatum and SLM astrocytes have been reported

before, SLM astrocytes occupying smaller synaptic territories

(Ogata and Kosaka, 2002). Similarly, astrocytic K1 buffering

in SLM has been reported to be more gap-junction depen-

dent than in the stratum radiatum (Hewett, 2009; Wallraff

et al., 2006). This hippocampal-region sensitivity to DA

appears inversed when applied to local neural circuits: DA

application prominently inhibits perforant path synapses on

CA1 pyramidal cells (in SLM) while having little effect (one

which inversely depends on DA concentration) on Schaffer

collateral synapses (in stratum radiatum) (Otmakhova and Lis-

man, 1999). Indeed, we found that blockade of DA receptors

had no effect on DA-induced Ca21 rises in SLM astroglia

while eliminating the DA-induced local synaptic inhibition,

whereas the latter was unaffected by Ca21 clamp in SLM

astroglia. Interestingly, the DA receptor independence of DA-

induced Ca21 rises in SLM astrocytes resembles that in cul-

tured astroglia (Vaarmann et al., 2010), pointing to the fact

that DA effects are not universal among astrocytes in different

brain regions or across preparations. This result also strongly

suggests that the DA signaling pathways acting on synapses

and astroglia in SLM are not causally related. Thus, unlike

other common neurotransmitters and neuromodulators (such

as glutamate, GABA, ATP, or adenosine) dopamine signaling

could, at least in some cases, engage astroglia and local neural

circuits independently. The adaptive role of this mode of

action remains to be ascertained: clearly, this DA target diver-

gence and the cellular mechanisms involved require a dedicat-

ed study. In a wider context, our findings demonstrate that

prominent Ca21 elevations in astroglia, which are often asso-

ciated with significant effects on local synaptic function may

be consequential to multiple and diverse cellular cascades

which do not necessarily lead to similar physiological conse-

quences (Bazargani and Attwell, 2016; Khakh and Sofroniew,

2015; Rusakov, 2015; Volterra et al., 2014).
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